-Value analysis by molecular dynamics simulations of reversible folding

نویسندگان

  • Giovanni Settanni
  • Francesco Rao
  • Amedeo Caflisch
چکیده

In -value analysis, the effects of mutations on the folding kinetics are compared with the corresponding effects on thermodynamic stability to investigate the structure of the protein-folding transition state (TS). Here, molecular dynamics (MD) simulations (totaling 0.65 ms) have been performed for a large set of single-point mutants of a 20-residue three-stranded antiparallel -sheet peptide. Between 57 and 120 folding events were sampled at near equilibrium for each mutant, allowing for accurate estimates of folding unfolding rates and stability changes. The values calculated from folding and unfolding rates extracted from the MD trajectories are reliable if the stability loss upon mutation is larger than 0.6 kcal mol, which is observed for 8 of the 32 single-point mutants. The same heterogeneity of the TS of the wild type was found in the mutated peptides, showing two possible pathways for folding. Single-point mutations can induce significant TS shifts not always detected by -value analysis. Specific nonnative interactions at the TS were observed in most of the peptides studied here. The interpretation of values based on the ratio of atomic contacts at the TS over the native state, which has been used in the past in MD and Monte Carlo simulations, is in agreement with the TS structures of wild-type peptide. However, values tend to overestimate the nativeness of the TS ensemble, when interpreted neglecting the nonnative interactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations

The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...

متن کامل

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Phi-value analysis by molecular dynamics simulations of reversible folding.

In Phi-value analysis, the effects of mutations on the folding kinetics are compared with the corresponding effects on thermodynamic stability to investigate the structure of the protein-folding transition state (TS). Here, molecular dynamics (MD) simulations (totaling 0.65 ms) have been performed for a large set of single-point mutants of a 20-residue three-stranded antiparallel beta-sheet pep...

متن کامل

Reversible peptide folding in solution by molecular dynamics simulation.

Long-standing questions on how peptides fold are addressed by the simulation at different temperatures of the reversible folding of a peptide in solution in atomic detail. Molecular dynamics simulations correctly predict the structure that is thermodynamically stable at 298 K, irrespective of the initial peptide conformation. The rate of folding and the free energy of folding at different tempe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005